digitalphotos taken on mobile phones and digital cameras; images that were first generated on photographic film and any digital images created from them; and images such as diagrams and illustrations
I'm using Xamarin camera2basic. When I taking photos on some picture write a text device watermark "SHOT ON MI A2" and some picture without that. I want to take photo without watermark. How can I disable watermark. On my device camera setting I disabled watermark but in my App it's enable for some picture. here is 2 pictures by my App xamarinandroid-camera2 asked Mar 18, 2021 at 740 2 I said On my device camera setting I disabled watermark but in my App it's enable for some picture. I disabled both of "Time Watermark" and "Dual Camera Watermark" . but in my app write "Dual Camera Watermark" on some photo. Mar 18, 2021 at 2037 Load 7 more related questions Show fewer related questions
Provesto mix multiple styles to create something novel. Use VQGAN+CLIP to create art from a text prompt. Generate, tweak and download up to 2 artworks per day for free. No watermarks. Duplicate and tweak your creations, re-use any input or style image, and get notified when creations are ready.
The smartphone cameras became much impressive and perfect for any occasion to capture the moments with accurate colors in high quality. As each smartphone manufacturers release smartphones with excellent quality cameras, users often tend to show off their devices, especially on social media. One of the best ways to show off your smartphone camera is to add a âShot onâ watermark to your pictures. Thus, you could let your followers know that you are using such a smartphone. Here is how to add shot on the watermark to images in Android. How to add Shot on watermark to images in Android There are many ways you could add watermarks to the pictures you have taken on your smartphone. Considering the apps, the option is available on many beautification apps like Retrica, B612, Youcam Perfect, etc. Here are the methods to add watermark with your smartphone or any smartphoneâ in Android. Add Shot on watermark on OnePlus 3, 3T, 5, 5T, 6, 6T, 7, 7T, 7Pro & 7T Pro This method is for those who use OnePlus smartphones. With their in-built OnePlus Camera on OxygenOS, it is easier and does not require any extra app installations. Open OnePlus Camera Swipe up the arrow near to the capture button and tap gear icon Settings at the top right corner. Choose âShot on OnePlus Watermark.â Toggle on the watermark and name if required. Then onwards, you will find Shot on the OnePlus watermark on the pictures you take using the device. Add Shot on watermark on Mi devices If you are having any of the latest XIaomiâs Redmi/Mi series smartphones with a dual camera, you can easily add one to your pictures too. Open the camera in your Mi smartphone. Tap on âOptionsâ at the bottom. Toggle on the âDual camera watermark.â Add watermark on Huawei/Honor smartphones Unlike smartphones by other OEMs, Huawei and its sub-brand Honor made the watermark as a separate mode on the camera app, instead of an always-on option. So, you need to enter the watermark mode. Open Huaweiâs camera app. Swipe from left to right. Tap on âWatermark.â Choose the appropriate watermark from the list, including Shot on Huawei/Honor, time, weather, location, custom text. Add watermark on Vivo smartphones The option is not available on every Vivo smartphone. If you have any of the latest Vivo mid-range/flagship smartphones, including Vivo V9, X21, or NEX, you can do it. Open Camera app. Tap on the gear icon at the top right corner. From the drop-down menu, tap on âWatermarkâ to enable the Shot on watermark o your Vivo smartphone. Add Shot on the watermark of any smartphone on any device You have gone through the steps to enable an inbuilt watermark option on major branded smartphones. The method described below shows the steps to add shot on watermark from any brand to the pictures take on any Android smartphone. For example, even if your smartphone is not OnePlus, you can quickly add a âShot on OnePlusâ watermark to your pictures, that seems so genuine. Here is how. Download the Shot On Stamp app for the required branded smartphone. Open app > Choose text, name, logo font styles > Add. You can find the complete list of available brands/models from the developer page of Shot On Stamp in Google Play Store from here. Isnât it so refreshing to post your pictures with branded watermarks? Share your thoughts.
MenghilangkanWatermark dengan Photoshop Retouching Foto dengan Efek Glamour Make Over Kamera HP Foto Hitam Putih Menjadi Berwarna Efek Foto Dual Colors Max PAGE 2 âdesainâ memiliki arti âproses untuk membuat dan menciptakan obyek baruâ. Sebagai kata benda, âdesainâ digunakan untuk menyebut hasil akhir dari sebuah proses
Digital watermarking has recently emerged as a solution to the problem of providing guarantees about copyright protection of digital images. However, several problems related to the robustness of invisible watermarking techniques from malicious or non-malicious attacks still remain unsolved. Visible watermarking is an effective technique for preventing unauthorized use of an image, based on the insertion of a translucent mark, which provides immediate claim of ownership. Digital watermarking technology primarily joins the rightful owner of totem to the protected media. Once the media are suspected to be illegally used, an open algorithm can be used to extract the digital watermark, for the purpose of showing the media's ownership. A reversible visible watermarking scheme is proposed to satisfy the applications, in which the visible watermark is expected to combat copyright piracy but can be removed to recover the original image without loss. In this paper, we propose a reversible visible watermark method, which embeds QR code into gray-scale images to create a visible watermark. Not using complex calculations, this paper tries to simply change the pixel value to achieve the digital watermark. Furthermore, a reversible steganographic method is used to embed the watermarking information, which can be used to recover the original images, into the watermarking images. To read the full-text of this research, you can request a copy directly from the authors.... Hsu & Wu & Wang 2012 afirmam que o sistema QR code tornou-se popular fora da indĂșstria devido Ă sua rĂĄpida legibilidade e grande capacidade de armazenamento em comparação aos cĂłdigos de barras padrĂ”es. Segundo os autores, o sistema consiste em mĂłdulos pretos arranjados em quadrado em um fundo branco e Ă© composto de quatro tipos padronizados de modos de dados, a saber alfanumĂ©ricos; byte; kanji ou virtualmente qualquer tipo de dados. ...... Segundo os autores, o sistema consiste em mĂłdulos pretos arranjados em quadrado em um fundo branco e Ă© composto de quatro tipos padronizados de modos de dados, a saber alfanumĂ©ricos; byte; kanji ou virtualmente qualquer tipo de dados. Os usuĂĄrios que levam a cĂąmera do celular ao cĂłdigo de barras, por meio um aplicativo decodificador, podem obter informaçÔes diretamente, como URLs, dados de texto e imagens, com uma economia significativa de tempo Hsu & Wu & Wang 2012. O cĂłdigo QR consome menos espaço para grandes informaçÔes em comparação com qualquer outra tecnologia Kavitha & Shan, 2017. ...... Dentre as vantagens do QR Code, os autores citam alta codificação de dados e a capacidade de correção de erros, pois os dados podem ser restaurados mesmo se o QR Code for parcialmente sujo ou danificado. Hsu & Wu & Wang 2012 afirmam em seu estudo que a marca d'ĂĄgua digital invisĂvel emergiu recentemente como solução para o problema de fornecer garantias sobre direitos autorais em imagens digitais, mas mesmo assim elas ainda sofrem ataques maliciosos de violação. Nesse sentido, propĂ”em um mĂ©todo de marca d'ĂĄgua visĂvel reversĂvel, que incorpora o cĂłdigo QR em imagens em escala de cinza. ...The objective of this work was to consolidate the studies regarding RFID and QR code technologies in the context of military organizations. RFID and QR code are technologies that aim to contribute to the control and management of information in search of optimizing organizational processes. Thus, understanding the current state of the art on these technologies are important to know the key contributions and challenges. This study is an exploratory, quantitative approach, based on the Theory of Consolidated Analytic Meta Approach, through a systematic review of the literature. A total of 208 articles were analyzed, of which 60 were from the Web of Science database and 148 from Scopus. The results revealed that the subject has been gaining importance in the last years, due to the increasing number of citations related to the theme. From the analysis of the key words and the main articles on the subject it was also noticed that the applications of RFID technology have been much more widespread than the QR code in the military scope. Among the main applications perceived is a wireless system of identification, with the aid of RFID technology, that contributes to security, logistics, management and communication in the military field. In order to deepen the analysis of the bibliographic research, maps were made with the co-citations and bibliographic coupling for the two databases. In addition, a table was presented summarizing the main advantages and disadvantages of RFID and QR code applications in the military mentioned in the main articles.... Consequently, the concept of "Information Hiding" [1] has been proposed. Then theory of Cryptography [2] and watermarking [3] has been developed. But in the present days, thanks to the rising computational supremacy, regular cryptographic and watermarking algorithms have been established to be evidence for weak point against mathematical and statistical methods. ...... Here apply it in Cover and Stego images to see the difference between these two images. The Correlation shows in equation 3. ... Dr- Indradip BanerjeeInternet expertise's are now carrying a imperative responsibility in our habitual living. It has the advantages along with the disadvantages; it can generate the requirements of information hiding technology for maintaining the secrecy of the secret information. Steganography is most fashionable information hiding technique in modern day situation, which comes from a Greek word " Î”ÎłÎ±Îœ-, ÎłÏαÏ-ΔÎčΜ " means " covered or hidden writing ". Extensive capacity of effort has been carried out by different researchers in this ground. In this contribution, a novel special domain image Steganography method has been proposed which has been design based on prime factor calculation on pixel intensity.... QR codes have been utilized in watermarking techniques for years. They were either embedded in arbitrary images [HWW12] or vice versa [VR12]. For the latter case, data was embedded in the QR code, which acted as a container to hide information [HCF11,BMT13]. ...QR code is a 2D matrix barcode widely used for product tracking, identification, document management and general marketing. Recently, there have been various attempts to utilize QR codes in 3D manufacturing by carving QR codes on the surface of the printed 3D shape. Nevertheless, significant shape editing and modulation may be required to allow readability of the embedded 3D-QR-codes with good decoding accuracy. In this paper, we introduce a novel QR code 3D fabrication framework aimed at unobtrusive embedding of 3D-QR-codes in the shape hence introducing minimal shape modulation. Essentially, our method computes bi-directional carvings in the 3D shape surface to obtain the black-and-white QR pattern. By using a directional light source, the black-and-white QR pattern emerges as lighted and shadow casted blocks on the shape respectively. To account for minimal modulation and elusiveness, we optimize the QR code carving shape geometry, visual disparity and light source position. Our technique employs a simulation of lighting phenomena through carved modules on the shape to ensure adequate contrast of the printed 3D-QR-code.... The robust watermark inserted into the region of interest ROI based on Integer Wavelet Transform IWT and the secondary watermark is embedded by the LSB substitution for tamper localization and recovery. A visual watermark method of implanting Quick Response QR Code image onto the grayscale image [10] is proposed. The insertion method changes the pixel values by adding positive random values to them, such that the altered results are visible. ...P. SivananthamaitreyP. Rajesh KumarDual digital watermarking has emerged as a successful solution for copyright protection, tamper detection and localization. However, several problems related to the robustness, capacity, tampered area detection still mystifying. This paper presents a high capacity dual watermarking mechanism for digital colour images. An invisible robust watermark is embedded in the Green component of the host image by using a hybrid combination of Stationary Wavelet Transform SWT and Singular Value Decomposition SVD for copyright protection. A fragile invisible watermark based on the Least Significant Bit LSB replacement approach is embedded in the Blue composition of the image for tamper detection and localization. The proposed technique focuses on robustness and imperceptibility while maximizing embedding capacity that makes this technique a multipurpose watermarking scheme.... " Information Hiding " term is the catching focuses now a days for the safety and security. Subsequently the philosophy of Cryptography[1]and watermarking[2]has been urbanized. The word " Security " is a very catching term from prehistoric age and the significance has been changed in contemporary age, because the research in reverse engineering techniques has been increased the processing power, most important race between researches in cryptanalysis[3]and watermarking detection[4]. ...... Safety and security of communication system proposed "Information Hiding". Then theory of Cryptography [2] and watermarking [3] has been developed. The word "Security" is not the same like some years back, because the research in reverse engineering techniques has been increased the processing power, most important race between researches in cryptanalysis [4] and watermarking detection [5]. ...... The watermarking images with QR codes has already drawn the attention of the research community in several works such as [7,8,9,10,11,12,13,14]. Moreover, there is an application of QR code embedding in audio [15]. ...With the continuous adoption of the web and the increase of connection speeds, people are more and more sharing multimedia content. The main problem that is created by this approach is that the shared content become less and less search-friendly. The information that is shared, cannot be easily queried, so a big part of the web becomes inaccessible. To this end, there is a big shift towards adopting new metadata standards for image and video that can efficiently help with queries over image and videos. In this work we extend our proposed method of embedding metadata as QR codes in gray scale images, to color video files with a slightly modified algorithm to make the decoding faster. We then examine the experimental results regarding the compressed file size, using a lossless encoding and the distortion of the frames of the video files. Storing the metadata inside the multimedia stream with QR format has several advantages and possible new uses that are going to be Kumari Chirag PatelIn cloud computing data and applications have been maintained using remote servers that is distributed and it utilizes internet. The main advantage of using cloud computing is that it allow user to use applications over the internet and also share files at any computer over the internet. The use of cloud computing has tremendous impact over the IT industry and also it provides efficient use of resources like bandwidth, storage and processing. As the growth of cloud computing increases many users interact with each other and security issues are arising. The cloud computing growth is hampered by these security issues. There are risks of data breach, data loss, unauthorized access, denial of services etc. In this paper the analysis cloud computing security issues and also surveyed various techniques that are used to handle cloud has been applied in the medical field that is used to enhance the safety of medical information. QR Code is used in this research to store medical image data and insert a watermark into the image using the Least Significant Bit - LSB method that can insert data into the bit sensitive area. Watermark insertion using the LSB method does not affect the image size and cannot be seen by the eye. This method insert a watermark that is distributed throughout the image. The experimental have rotated the image in 90 degrees in a clockwise direction, rotated 90 degrees in a counterclockwise direction and rotated in the opposite direction. The results of the experiment showed that the rotation of the image in the above direction did not affect the reading of the patientâs injury data from the QR Code. Nobuyuki TerauraWe propose a counterfeit detection system that uses a double-coding procedure to encode two-dimensional code. The system uses ordinary black ink, which absorbs infrared rays, and special black ink, which transmits infrared rays. Because special black is copied as ordinary black when replicated by a copying machine, the double-encoded data is lost, thereby enabling the item identified by the code to be identified as a counterfeit. The double-coded two-dimensional code is decoded by comparing the images obtained under white light and infrared radiation. If the data to be double-coded is encrypted, the counterfeiter cannot forge the double-coded two-dimensional code. Duplication can also be detected by using the data to be double-coded as encrypted data of the serial M. Gaikwad K. R. SinghThe grow of smart phone and mobile devices market, has created a new set of opportunities for companies to develop new publicity strategies. One of the most widespread forms of engaging mobile users from printed materials is based on the use of QR codes, which have been adopted for many different applications such as accessing web sites or downloading premium content. In this research work, we will be performing embedding QR code into color image and hiding information using QR code, in order to make them visually appealing to the user while maintaining acceptable decoding robustness. In contrast to previous approaches the methods presented here allows to automatically embedding QR codes into color, grayscale or binary images. These embedding are designed to be compatible with standard decoding applications and can be applied to any color image with full area coverage. The embedding problem is solved by the integration of halftoning method. Finally, we show experimental results of halftoning of color image, embedded QR code image in color image and decoded QR code image from color is connected to the internet with a sensor for understanding the property of the thing for which a two-dimensional code was used. Two-dimensional codes can play the role of connecting cyberspace to physical space, and can play a significant role in the so-called Internet of Things. Moreover, the advancement of machine vision is progressing with machine-to-machine communication. On the other hand, there is also private information, such as personal information, that should not be known by others. Current two-dimensional codes have become ubiquitous and express the cell using two colors white and black. The cell expresses white or black in one bit, and there is no confidentiality available. In response to this, we propose an addition to the existing part that can be read with conventional equipment. We propose a 'secrecy part' that cannot be read without a decryption key. Further, we propose a method for rendering these two-dimensional codes compatible with black-and-white codes. In order to generate the secrecy part, it is necessary to transform a cell into several bits. A multicolor method and a multiple-region method are used to transform the code into several bits. An evaluation of the multi-valued cells in the two-dimensional codes here proposed, with a read verification and compatibility along with the added secrecy part, was carried out using a smartphone with successful Zhang Tiegang GaoQuick Response Code QR Code has become an important entrance of O2O Online to Offline in the era of mobile internet. Many applications, such as transformation of URLs, the descriptions of these images, and so on can be realized through embedding QR Code into images. However, the embedding of QR Code may destroy some image details in the corresponding area, which is annoying, especially in these applications that need high precision. The reversible recovery of original image is of importance. A reversible visible watermarking scheme is proposed for embedding QR Code into images. One can decode the information that is encoded in the QR Code and reversibly recover the original image after the QR Code is scanned successfully. Optimization has been achieved both by utilizing the features of QR Code when encoding and decoding in the visible watermarking period and by utilizing the blocking, scanning, and preprocessing of information in the reversible data hiding period. Experimental results have demonstrated the validity and efficiency of the proposed scheme. Better image quality has been achieved by the proposed scheme compared with existing QR code based blind digital image watermarking technique with an attack detection feature is described here. The technique describes a key based framework to incorporate image, server port address or website address as watermark data; which increases the extended usability of the embedded data and the adaptability of the verification application. The watermarking problem is formulated as a signal communication problem with watermark data representation, embedding of watermark and attack detection as a source encoding, channel encoding and attenuation detection problems respectively. The mathematical aspects of the respective signal processing problems are extended to digital image watermarking with sufficient background support. The use of QR code ensures extended usability, while the application specific watermark data achieves adaptability of the verification application. The QR code is embedded into the attack resistant HH component of 1st level DWT domain of the cover image and to detect malicious interference by an attacker, a unique image registry code generated from the high frequency structural components of the stego-image is used. The key based approach and the attack resistant embedding domain makes this method robust against visually invariant attacks. The testing results show the compliance of the method with all the proposed WangThis paper presents a novel image trading mechanism based on hybrid watermarking techniques. The removable visible watermarking technique is used to provide the safe preview of the protected media. The fingerprinting is used to trace the illegal distributor. Two kinds of watermarking techniques embed watermarks in DCT domain in order to conform to compression techniques. Experimental results show that image trading mechanism based on hybrid watermarking techniques can protect the image with high technologies are now charring a vital role in our day to day life. It has the advantages along with the disadvantages also, which in term generates the requirements of information hiding technology for maintaining the secrecy of the secret information. Extensive amount of work has been carried out by different researchers in this field. In this paper, a novel special domain image Steganography method has been proposed which has been design based as an extension of the PMM method. C 2013 The Authors. Published by Elsevier novel reversible data hiding algorithm, which can recover the original image without any distortion from the marked image after the hidden data have been extracted, is presented in this paper. This algorithm utilizes the zero or the minimum points of the histogram of an image and slightly modifies the pixel grayscale values to embed data into the image. It can embed more data than many of the existing reversible data hiding algorithms. It is proved analytically and shown experimentally that the peak signal-to-noise ratio PSNR of the marked image generated by this method versus the original image is guaranteed to be above 48 dB. This lower bound of PSNR is much higher than that of all reversible data hiding techniques reported in the literature. The computational complexity of our proposed technique is low and the execution time is short. The algorithm has been successfully applied to a wide range of images, including commonly used images, medical images, texture images, aerial images and all of the 1096 images in CorelDraw database. Experimental results and performance comparison with other reversible data hiding schemes are presented to demonstrate the validity of the proposed this paper, we present two new methods for authentication of digital images using invertible watermarking. While virtually all watermarking schemes introduce some small amount of non-invertible distortion in the image, the new methods are invertible in the sense that, if the image is deemed authentic, the distortion due to authentication can be removed to obtain the original image data. Two techniques are proposed one is based on robust spatial additive watermarks combined with modulo addition and the second one on lossless compression and encryption of bit-planes. Both techniques provide cryptographic strength in verifying the image integrity in the sense that the probability of making a modification to the image that will not be detected can be directly related to a secure cryptographic element, such as a has function. The second technique can be generalized to other data types than bitmap to quantization error, bit-replacement, or truncation, most data embedding techniques proposed so far lead to distortions in the original image. These distortions create problems in some areas such as medical, astronomical, and military imagery. Lossless watermarking is an exact restoration approach for recovering the original image from the watermarked image. In this paper we present a novel reversible watermarking technique with higher embedding capacity considering the Human Visual System HVS. During embedding we detect the textured blocks, extract LSBs of the pixel-values from these textured blocks considering the HVS and concatenate the authentication information with the compressed bit-string. We then replace the LSBs of the textured blocks considering the HVS with this bit-string. Since we consider the HVS while extracting LSBs and embedding the payload, the distortions in the resulting watermarked image are completely reversible and imperceptible. We present experimental results to demonstrate the utility of our proposed visible watermark may convey ownership information that identifies the originator of image and video. A potential application scenario for visible watermarks was proposed by IBM where an image is originally embedded with a visible watermark before posting on the web for free observation and download. The watermarked image which serves as a "teaser." The watermark can be removed to recreate the unmarked image by request of interested buyers. Before we can design an algorithm for satisfying this application, three basic problems should be solved. First, we need to find a strategy suitable for producing large amount of visually same but numerically different watermarked versions of the image for different users. Second, the algorithm should let the embedding parameters reachable for any legal user to make the embedding process invertible. Third, an unauthorized user should be prevented from removing the embedded watermark pattern. In this letter, we propose a user-key-dependent removable visible watermarking system RVWS. The user key structure decides both the embedded subset of watermark and the host information adopted for adaptive embedding. The neighbor-dependent embedder adjusts the marking strength to host features and makes unauthorized removal very difficult. With correct user keys, watermark removal can be accomplished in "informed detection" and the high quality unmarked image can be restored. In contrast, unauthorized operation either overly or insufficiently removes the watermark due to wrong estimation of embedding parameters, and thus, the resulting image has apparent data hiding, distortions are introduced in an original image because of quantization errors, bit-replacement, or truncation at the grayscale limit. These distortions are irreversible and visible which are unacceptable in some applications like medical imaging. However, the reversible watermarking technique overcomes this problem by retrieving the original image from the watermarked image. In this paper, we present a novel reversible watermarking algorithm with a high embedding capacity considering the human visual system HVS. We use the arithmetic coding technique to compress a part of the original image and store the compressed data together with necessary authentication information as the payload. The payload is then embedded within the original image with consideration of the HVS. Due to this, the watermarked image contains no perceptible artifacts. During the extraction phase, we extract the payload, restore the exact copy of the original image and verify the authenticity. Experimental results show that our method provides a higher embedding capacity compared to the other algorithms proposed in the common drawback of virtually all current data embedding methods is the fact that the original image is inevitably distorted due to data embedding itself. This distortion typically cannot be removed completely due to quantization, bit-replacement, or truncation at the grayscales 0 and 255. Although the distortion is often quite small and perceptual models are used to minimize its visibility, the distortion may not be acceptable for medical imagery for legal reasons or for military images inspected under non-standard viewing conditions after enhancement or extreme zoom. In this paper, we introduce a new paradigm for data embedding in images lossless data embedding that has the property that the distortion due to embedding can be completely removed from the watermarked image after the embedded data has been extracted. We present lossless embedding methods for the uncompressed formats BMP, TIFF and for the JPEG format. We also show how the concept of lossless data embedding can be used as a powerful tool to achieve a variety of non-trivial tasks, including lossless authentication using fragile watermarks, steganalysis of LSB embedding, and distortion-free robust based scaling of a watermark image is of paramount importance to make the degree of marking applied variable according to the features of host images. Here. A wavelet domain visible watermarking is proposed. The scaling factors for the pixel based method are adaptively determined by the effect of luminance and local spatial characteristicsIn this paper, we propose a reversible visible watermarking algorithm to satisfy a new application scenario where the visible watermark serves as a tag or ownership identifier, but can be completely removed to resume the original image data. It includes two procedures data hiding and visible watermark embedding. In order to losslessly recover both the watermark-covered and nonwatermark-covered image contents at the receiver end, the payload consists of two reconstruction data packets, one for recovering the watermark-covered region, and the other for the nonwatermark-covered region. The data hiding technique reversibly hides the payload in the image region not covered by the visible watermark. To satisfy the requirements of large capacity and high image quality, our hiding technique is based on data compression and uses a payload-adaptive scheme. It further adopts error diffusion for improving subjective image quality and arithmetic compression using a character-based model for increasing computational efficiency. The visible watermark is securely embedded based on a user-key-controlled embedding mechanism. The data hiding and the visible watermark embedding procedures are integrated into a secure watermarking system by a specially designed user key Jun TianReversible data embedding has drawn lots of interest recently. Being reversible, the original digital content can be completely restored. We present a novel reversible data-embedding method for digital images. We explore the redundancy in digital images to achieve very high embedding capacity, and keep the distortion low. Bian YangZheming LuShenghe SunMany watermarking algorithms have been proposed based on the vector quantization VQ technique, which bases the watermark embedding and extracting schemes on the idea of quantization index modulation QIM. We review in this paper VQ-based watermarking algorithms regarding the reversibility of VQ indices in the compressed domain. Considering the reversibility is usually traded with the compression performance, we propose a new reversible image watermarking algorithm using a modified version of the traditional fast correlation based VQ FCVQ and achieves both higher compression and watermarking performance than other algorithms. The advantages of the proposed modified FCVQ include the desirable compression performance and the independently applicability in the practical case without watermarking. Simulation results demonstrated our proposed algorithm. Comparisons between our algorithm and others are this paper, we propose a new algorithm in reversible data hiding, with the application associated with the quick response QR codes. QR codes are random patterns, which can be commonly observed on the corner of posters or webpages. The goal of QR codes aims at convenienceoriented applications for mobile phone users. People can use the mobile phone cameras to capture QR code at the corner of web page, and then the hyperlink corresponding to the QR code can be accessed instantly. Since QR code looks like random noise and it occupies a corner of the original image, its existence can greatly reduce the value of the original content. Thus, how to retain the value of original image, while keeping the capability for the instant access for webpages, would be the major concern of this paper. With the aid of our reversible data hiding technique, the QR codes can be hidden into the original image, and considerable increase in embedding capacity can be expected. Next, we propose a scheme such that when the image containing the QR code is browsed, the hyperlink corresponding to the QR code is accessed first. Then, the QR code could get vanished and the original image would be recovered to retain the information conveyed therein. Simulation results demonstrate the applicability of the proposed novel reversible data hiding scheme based on invariability of the sum of pixel pairs and pairwise difference adjustment PDA is presented in this letter. For each pixel pair, if a certain value is added to one pixel while the same value is subtracted from the other, then the sum of these two pixels will remain unchanged. How to properly select this value is the key issue for the balance between reversibility and distortion. In this letter, half the difference of a pixel pair plus 1-bit watermark has been elaborately selected to satisfy this purpose. In addition, PDA is proposed to significantly reduce the capacity consumed by overhead information. A series of experiments is conducted to verify the effectiveness and advantages of the proposed Yang Ming-Han TsaiData hiding is an important way of realising copyright protection for multimedia. In this study, a new predictive method is proposed to enhance the histogram-based reversible data hiding approach on grey images. In those developed histogram-based reversible data hiding approaches, their drawbacks are the number of predictive values less to the number of pixels in an image. In these interleaving prediction methods, the predictive values are as many as the pixel values. All predictive error values are transformed into histogram to create higher peak values and to improve the embedding capacity. Moreover, for each pixel, its difference value between the original image and the stego-image remains within ±1. This guarantees that the peak signal-to-noise ratio PSNR of the stego-image is above 48±dB. Experimental results show that the histogram-based reversible data hiding approach can raise a larger capacity and still remain a good image quality, compared to other histogram-based LiuWen-Hsiang TsaiA novel method for generic visible watermarking with a capability of lossless image recovery is proposed. The method is based on the use of deterministic one-to-one compound mappings of image pixel values for overlaying a variety of visible watermarks of arbitrary sizes on cover images. The compound mappings are proved to be reversible, which allows for lossless recovery of original images from watermarked images. The mappings may be adjusted to yield pixel values close to those of desired visible watermarks. Different types of visible watermarks, including opaque monochrome and translucent full color ones, are embedded as applications of the proposed generic approach. A two-fold monotonically increasing compound mapping is created and proved to yield more distinctive visible watermarks in the watermarked image. Security protection measures by parameter and mapping randomizations have also been proposed to deter attackers from illicit image recoveries. Experimental results demonstrating the effectiveness of the proposed approach are also Tsai Yu-Chen HuHsiu-Lien YehIn this paper, a reversible image hiding scheme based on histogram shifting for medical images is proposed. As we know, the histogram-based reversible data hiding is limited by the hiding capacity, which is influenced by the overhead of position information that has to be embedded in the host image. To solve this problem, the similarity of neighboring pixels in the images was explored by using the prediction technique and the residual histogram of the predicted errors of the host image was used to hide the secret data in the proposed scheme. In addition, the overlapping between peak and zero pairs was used to further increase the hiding to the experimental results, a higher hiding capacity was obtained and a good quality stego-image was preserved in the proposed scheme. The hiding capacity provided by the proposed scheme was approximately three times that of the original histogram-based method. Compared to the histogram-based method, the quality of the stego-image improved about dB when the same amounts of secret data were TsaiA novel visible watermarking algorithm based on the content and contrast aware COCOA technique with the consideration of Human Visual System HVS model is presented in this study. In order to determine the optimal watermark locations and strength at the watermark embedding stage, the COCOA visible watermarking utilizes the global and local characteristics of the host and watermark images in the discrete wavelet transform DWT domain. To achieve the best tradeoff between the embedding energy of watermark and the perceptual translucence, the utilization of contrastâsensitive function, noise visible function of perceptual model, and the basis function amplitudes of DWT coefficients are fine tuned, for the best quality of perceptual translucence and noise reduction of the COCOA algorithm. The experimental results demonstrate that COCOA technique not only provides high PSNR values for the watermarked images, but also preserves the watermark visibility under various signal processing operations, especially the watermark removal LuJun-Xiang WangBei-Bei LiuCopyright protection and information security have become serious problems due to the ever growing amount of digital data over the Internet. Reversible data hiding is a special type of data hiding technique that guarantees not only the secret data but also the cover media can be reconstructed without any distortion. Traditional schemes are based on spatial, discrete cosine transformation DCT and discrete wavelet transformation DWT domains. Recently, some vector quantization VQ based reversible data hiding schemes have been proposed. This paper proposes an improved reversible data hiding scheme based on VQ-index residual value coding. Experimental results show that our scheme outperforms two recently proposed schemes, namely side-match vector quantization SMVQ-based data hiding and modified fast correlation vector quantization MFCVQ-based data TsengChi-Pin HsiehFor some applications such as satellite and medical images, reversible data hiding is the best solution to provide copyright protection or authentication. Being reversible, the decoder can extract the hidden data and recover the original image without distortion. In this paper, a reversible data hiding scheme based on prediction error expansion is proposed. The predictive value is computed by using various predictors. The secret data is embedded in the cover image by exploiting the expansion of the difference between a pixel and its predictive value. Experimental results show that our method is capable of providing a great embedding capacity without making noticeable distortion. In addition, the proposed scheme is also applicable to various TsaiLong-Wen ChangA novel reversible visible watermarking algorithm is proposed. It can fully remove the watermark from the visible watermarked image such that the original image can be restored. Pixel values of original image beneath the watermark are mapped to a small range [alpha, alpha + 127] to generate a visible watermarked image. Since the mapping is many-to-one, taking inverse mapping can only approximate the original image. To restore the original image, the difference image of subtracting the approximated image from the original image and other side information are losslessly compressed to be embedded in the visible watermarked image by a reversible data embedding algorithm. We proposed a key-based scheme for the compromise between transparency and robustness. The key is a random variable with discrete normal distribution. In addition, only users with correct key can restore the original image. In the experimental results, we show the transparent degree of watermark can be controlled by the variance of the key. Users with wrong key can not restore the original image from the visible watermarked XiantingPing LingdiLi ZhuoThis paper presents a reversible data hiding scheme. The proposed scheme is based on the difference histogram shifting to spare space for data hiding. Nine basic scan paths are defined, and this means all-directional adjacent pixel differences can be obtained. Due to the fact that the grayscale values of adjacent pixels are close to each other, the all-directional adjacent pixel difference histogram contains a large number of points with equal values. Hence, more data can be embedded into the cover image than previous works based on histogram shifting. Furthermore, multi-layer embedding is used to increase the hiding capacity. In each embedding process, we can embed a large number of data into the cover image by choosing the best scan path and the optimized pixel difference. As experimental results have shown, the cover images are able to embed secret data at an average of the size of the original images while all the PSNR values of the stego images remain larger than 30 novel reversible data hiding scheme based on an integer transform is presented in this paper. The invertible integer transform exploits the correlations among four pixels in a quad. Data embedding is carried out by expanding the differences between one pixel and each of its three neighboring pixels. However, the high hiding capacity can not be achieved only by difference expansion, so the companding technique is introduced into the embedding process so as to further increase hiding capacity. A series of experiments are conducted to verify the feasibility and effectiveness of the proposed watermarking is an important intellectual property rights IPR protection technique for digital images. For some purposes such as contents used in learning web sites or digital libraries, digital images have to be released but illegal reproductions of them are prohibited. Digital images embedded with visible watermarks will contain perceptible but unobtrusive patterns. The embedded patterns should be difficult to be removed unless intensive and expensive human labors are involved. Recently, Huang and Wu have proposed an attacking scheme against visible watermarks. The structure of embedded visible watermark will be seriously destroyed and a perceptually satisfying recovered image can be obtained by this attacking scheme. To improve the robustness of current visible watermarking schemes, a novel scheme that takes advantages of visible watermarking, fragile watermarking and information hiding has been studied in our research. Simulation results demonstrate that our scheme is robust to the present attacking scheme for visible M. AlattarA reversible watermarking algorithm with very high data-hiding capacity has been developed for color images. The algorithm allows the watermarking process to be reversed, which restores the exact original image. The algorithm hides several bits in the difference expansion of vectors of adjacent pixels. The required general reversible integer transform and the necessary conditions to avoid underflow and overflow are derived for any vector of arbitrary length. Also, the potential payload size that can be embedded into a host image is discussed, and a feedback system for controlling this size is developed. In addition, to maximize the amount of data that can be hidden into an image, the embedding algorithm can be applied recursively across the color components. Simulation results using spatial triplets, spatial quads, cross-color triplets, and cross-color quads are presented and compared with the existing reversible watermarking algorithms. These results indicate that the spatial, quad-based algorithm allows for hiding the largest payload at the highest signal-to-noise is composed of the one-bit pixel on the IK. The constitution of Stem starts at Stem = 1. Step 5If S is found, then compress Stem before each addition and stratify If not, repeat step 5Dc= StemStemStep 4To find out S via Stem, which is composed of the one-bit pixel on the IK. The constitution of Stem starts at Stem = 1. Step 5If S is found, then compress Stem before each addition and stratify DC = Stem â Stem,c . If not, repeat step 5. Step 6Construct the payload bit stream as H = SC É· DC. Replace S with H to create I â Rm. REFERENCES
Langkahpertama Log in melalui aplikasi. Lihat notifikasi mengenai dana pengembalian ke âDompet Shopeeâ. Jika dana sudah dikembalikan, maka di âDompet Shopeeâ akan tercantum jumlah dana yang dikembalikan. Berikutnya, masuk ke menu âAkun Sayaâ. Lalu pilih menu âRekening Bankâ, selanjutnya pilih âTambah Rekening Baruâ.
Watermark adalah identitas yang dibubuhkan pada sebuah karya oleh penciptanya. Identitas tersebut dapat berupa logo, tulisan, atau ikon gambar. Kamu tentu sering menemukan watermark di berbagai karya. Misalnya saat menonton video TikTok, watermark-nya yaitu username si pemilik akun. Memangnya, penggunaan watermark ini untuk apa, sih? Yuk cari tahu fungsi, jenis, hingga cara membuat watermark di artikel ini! Apa Itu Watermark? Watermark adalah sebuah logo, gambar, atau tulisan yang dengan sengaja dimasukkan pada sebuah karya atau konten. Watermark dimasukkan dalam sebuah karya bukan tanpa alasan, melainkan untuk melindungi karya tersebut dari plagiasi dan penjiplakan. Dengan menggunakan watermark, karyamu akan lebih diakui kepemilikannya sehingga tidak mudah dicuri atau diklaim orang lain. Meski dimasukkan ke dalam sebuah karya, biasanya watermark dibuat kecil atau semi transparan sehingga tidak mengganggu tampilan karya. Sesuai namanya, watermark tanda air ini biasanya hanya terlihat samar dan semi transparan. Pada abad ke-13, pembuatannya dilakukan di atas kertas dengan cara mengubah ketebalan kertas yang masih basah pada bagian yang akan diberi watermark. Kemudian bagian tersebut akan ditekan dengan cetakan gambar sehingga ketika sudah kering nanti terbentuklah kertas yang ber-watermark sesuai cetakan tadi. Sementara di era internet of things IoT ini pembuatan tanda air semakin modern seperti menggunakan logo atau teks. Jika kamu sering melihat video Youtube, apalagi Youtuber ternama pasti kamu sering mendapatkan logo atau nama mereka di pojok videonya. Jika kamu pernah mengunduh sebuah dokumen seperti jurnal dari situs online, beberapa di antaranya juga memiliki watermark. Watermark ini bersinggungan juga dengan copyright. Sederhananya, copyright akan ditandai dengan sebuah watermark pada karya atau konten. Baca Juga Kamu Wajib Paham! Inilah Bedanya Copyright, Trademark, dan Patent Di bawah ini terdapat beberapa fungsi watermark yang perlu kamu ketahui 1. Melindungi konten dari plagiasi Konten berupa gambar sangat mudah diplagiasi oleh orang lain. Di internet sendiri, kamu hanya perlu klik kanan gambar lalu simpan, maka kamu sudah bisa mendapatkan fotonya. Apalagi jika kamu menjual foto tersebut pada situs jual foto online. Watermark adalah solusi agar orang lain tidak dapat menggunakannya sembarangan tanpa persetujuan kamu. 2. Menambah keterangan konten Sebuah gambar yang tidak ada deskripsinya dapat mengandung seribu makna. Oleh karena itu tidak ada salahnya untuk menambahkan beberapa kalimat pada gambar tersebut. Contohnya kamu sedang pergi berlibur dan mengambil gambar. Foto tersebut bisa kamu beri tanggal, tempat, maupun cerita singkat yang menggambarkan foto itu. 3. Menandai seseorang Selanjutnya adalah untuk menandai seseorang yang ikut pada konten tersebut. Ketika kamu upload gambar di internet, misalnya di Instagram dan Facebook tentu terdapat fitur tag atau menandai. Namun, biasanya ada orang-orang yang memang tidak ingin profil mereka tersebar. Maka dari itu memanfaatkan watermark, dengan cara memberi nama pada foto tersebut yang menunjukkan identitasnya orangnya. 4. Memberi informasi detail foto Ketika kamu mengambil foto entah menggunakan kamera digital ataupun ponsel, tentu memiliki banyak informasi teknis penting yang biasa disebut EXIF. Misalnya seperti aperture, shutter speed, merek kamera dan yang lain. Informasi ini dapat berguna untuk orang yang sedang belajar fotografi. Sehingga mereka dapat mengikuti pengaturan kamera tersebut, sehingga hasil fotonya lebih bagus. Data EXIF itulah yang bisa kamu buat menjadi watermark. Baca Juga Belajar Fotografi dengan Memahami Istilah-istilah Teknis Fotografi 5. Membuat meme dan komik Kamu pasti pernah melihat meme yang berisi gambar dengan kutipan lucu, kan? Kutipan itu bisa kamu jadikan sebagai watermark pada foto. Cukup menggunakan gambar yang dibutuhkan, lalu edit dengan menambahkan teks, setelah itu share di media sosial kamu. Bukan hanya menambahkan logo atau beberapa teks saja. Lebih dari itu, pada foto kamu dapat memasukan sebuah puisi atau kutipan. Bisa juga disertai dengan tanggal dibuat serta sumber fotonya. Jenis-Jenis Watermark Adapun jenis watermark dapat dibagi menjadi dua, yaitu Visible Watermark Visible watermark adalah watermark yang dapat dilihat secara jelas. Visible watermark ini dapat berupa Logo Keberadaan logo perusahaan akan menjadi sebuah identitas tersendiri branding agar bisa lebih mudah dikenali khalayak umum. Tulisan Watermark jenis ini biasanya berupa font yang mencantumkan informasi pemilik karya seperti username akun media sosial, nama toko, nama website, dan lain sebagainya. Ikon Watermark ini biasanya disertakan dalam video YouTube. Selain untuk mencegah pencurian konten, visible watermark juga bisa untuk mengenalkan brand perusahaan kepada audiens. Contoh visible watermark yaitu pada gambar milik Dewaweb dan dokumen berikut ini Digital Watermark Digital watermark adalah watermark yang tidak dapat dilihat hanya dengan indra penglihatan saja. Lebih modern lagi, sebagai gantinya watermark disisipkan dalam data gambar atau karya tersebut untuk tanda kepemilikan. Oleh karena itu, watermark jenis ini banyak digunakan pada lembaga perbankan atau berita untuk mengidentifikasi sumber serta mengautentikasi medianya. Kelebihan dan Kekurangan Watermark Walaupun fungsinya sangat penting, watermark tetap memiliki kekurangan. Berikut adalah kelebihan dan kekurangan penggunaan watermark Kelebihan Kelebihan utama watermark adalah mampu menghindari adanya pencurian karya. Orang lain akan berpikir dua kali untuk menggunakan apalagi mengklaim karyamu. Jadi, hasil karyamu lebih dihargai oleh publik. Mampu membangun branding. Saat karyamu dengan watermark dilihat orang lain maka mereka bisa langsung mencari tahu tentang kamu atau perusahaanmu. Kekurangan Memerlukan waktu lebih untuk memasukkan watermark ke karya. Watermark tidak sepenuhnya menjamin karya bebas dari pencurian. Hal ini karena watermark masih bisa dihapus atau di-crop. Kamu tentunya tidak mau karyamu dicuri, kan? Tenang, di artikel ini Dewaweb juga memberikan tips membuat watermark agar tidak mudah dihapus. Simak terus, ya! Cara Membuat Watermark dengan Canva Ada banyak tools dan aplikasi yang bisa digunakan untuk membuat watermark seperti Photoshop, Adobe Illustrator, Microsoft Word, Canva, dan lain-lain. Pada artikel ini Dewaweb menggunakan Canva untuk membuat watermark karena jauh lebih mudah dilakukan. Yuk simak langkah-langkahnya! Buka situs Canva. Di sini pengaturan bahasa menggunakan Bahasa Indonesia. Langsung klik pada Buat Desain > Ukuran Khusus kemudian pilih ukuran yang diinginkan. Contohnya ukuran banner. Setelah itu kamu bisa mulai membuat logo untuk watermark-nya. Jika sudah, klik ikon titik tiga > transparansi > atur transparansi. Apabila logo sudah terbuat, pilih Bagikan > Unduh > Latar belakang transparan jika akun premium. Kemudian klik Unduh. Setelah terunduh, selanjutnya masukkan foto yang ingin diberikan watermark. Tambahkan watermark pada pojok kiri atau kanan foto, seperti gambar berikut. Selesai! Kamu sudah berhasil membuat watermark pada karyamu. Sangat mudah, kan? Jika kamu ingin membuat watermark di Microsoft Word, kamu bisa cari tahu caranya pada artikel Cara Membuat Watermark di Word dengan Mudah. Tips Membuat Watermark Nah, meskipun menggunakan watermark, pastikan agar karya utama tidak terganggu dan tetap enak dilihat. Berikut ini Dewaweb berikan beberapa tips dalam membuat watermark Pastikan ukuran watermark proporsional. Biasanya ukuran watermark tidak lebih dari 1/16 ukuran karya. Jangan meletakkan watermark pada latar belakang yang rata mulus karena memungkinkan untuk dihapus atau di-crop. Hindari peletakan watermark yang berada terlalu ujung karena juga memungkinkan untuk di-crop. Gunakan warna semi transparan agar tidak merusak estetika karya. Cantumkan informasi pribadi misalnya â© 2018 Nama Kamuâ. Tips tersebut penting mengingat karyamu masih bisa dicuri oleh orang lain, misalnya dengan cara menghapus background karyamu dan menumpuknya dengan watermark lain. Baca Juga 10+ Cara Hapus Background Foto Online, Mudah & Gratis Yuk Lindungi Kontenmu dengan Watermark! Sekarang kamu sudah tahu apa itu watermark. Watermark adalah logo, teks, atau gambar yang dibubuhkan pada sebuah karya atau konten. Fungsi watermark yaitu untuk menghindari adanya plagiasi sehingga tidak ada orang yang bisa mengklaim karyamu sembarangan, apalagi untuk tujuan komersial. Baca Juga 11 Website Terbaik untuk Cek Plagiasi Konten dan Artikel Tenang, pembuatan watermark tidak ribet, kok! Kamu bisa membuatnya dengan Canva secara gratis dan mudah! Langkah-langkahnya juga sudah dijelaskan secara rinci di atas. Yuk, mulai sekarang lindungilah kontenmu dengan menggunakan watermark! Demikian artikel ini, semoga bermanfaat, ya! Kamu juga bisa membaca kumpulan artikel informatif lainnya di blog Dewaweb. Jika tertarik, kamu juga dapat mengikuti program afiliasi dari Dewaweb ataupun webinar gratis dari Dewatalks yang pastinya bermanfaat untuk menambah wawasanmu seputar dunia digital dan pengembangan website. Salam sukses online!
Nolimitations, watermarks, or recording restrictions. Instantly record presentations, demonstrations, lectures, and how-tos videos for free using your browser. Record multiple sources at the same time. Turn any webcam into a Smart Camera. With Panopto Express, using just a standard webcam, you can effortlessly record yourself moving
ï»żIngin melindungi karyamu? Berikut adalah penjelasan lengkap mengenai watermark beserta contoh dan cara membuatnya. Zaman sekarang, karya-karya yang diposting di media sosial atau platform lainnya mudah sekali untuk diklaim orang lain. Tapi kamu tidak perlu khawatir, karena kamu bisa menggunakan watermark. Watermark adalah hak cipta yang digunakan untuk menandakan bahwa sebuah karya adalah milikmu. Watermark bisa hadir dalam bentuk logo atau tulisan agar orang lain tidak bisa mengaku bahwa karya tersebut adalah miliknya. Kalau kamu sering berkarya, kamu wajib untuk mengetahui definisi dan cara membuatnya. Yuk, simak penjelasan lengkap mengenai watermark berikut ini. BACA JUGA 5 Jenis Pekerjaan yang Cocok untuk Fresh Graduate Pengertian Watermark Sumber Gambar Freepik Watermark adalah sebuah tanda yang dapat berupa teks, logo, ataupun pola yang dimasukkan pada sebuah karya untuk menandakan kepemilikan dari karya tersebut. Kamu pasti pernah melihatnya. Saat kamu menonton video YouTuber ternama, kamu bisa melihat logo atau nama mereka di videonya. Atau mungkin kamu melihatnya di foto-foto atau gambar online. Watermark ini biasanya dibuat dengan ukuran yang kecil atau transparan untuk melindung hak cipta dari karya tersebut. Namun, ada juga yang membuatnya dalam ukuran besar dan biasanya ditemukan di situs download gambar. Fungsi Watermark Watermark memiliki beberapa kegunaan. Kegunaan yang paling umum adalah untuk melindungi hak cipta sebuah karya. Watermark mencegah orang lain menggunakan karyamu tanpa izin. Jadi ketika kamu posting karyamu di media sosial, orang lain tidak bisa sembarang memposting ulang dan mengklaimnya. Selain itu, watermark juga bisa digunakan untuk branding. Logo yang kamu buat bisa digunakan untuk mempromosikan karyamu. Sehingga saat orang lain melihatnya, mereka akan langsung kenal dengan penciptanya. Contoh Watermark Sumber Gambar Visual Watermark Dari gambar diatas, kamu bisa melihat dua cara menggunakan watermark untuk melindungi hak cipta foto kamu. Pada bagian kiri, watermark ditampilkan di seluruh bagian foto, sedangkan bagian kanan menampilkannya di tengah-tengah foto. Dengan kedua cara tersebut, orang tidak akan bisa meng-crop logo watermark tersebut, dan kamu perlu membayar pemiliknya untuk menghilangkannya. Cara Membuat Watermark Jika kamu ingin mendesain dan menciptakan watermark sendiri, berikut adalah cara membuat watermark sendiri. 1. Pilih Sarana Pembuatan Watermark Sekarang ada banyak sarana pembuatan watermark yang bisa membantu Toppers untuk membuat watermark sendiri. Salah satu contohnya adalah Adobe Photoshop. Ada banyak pilihan lainnya yang bisa kamu temukan di internet. Jika kamu menggunakan ponsel, kamu juga bisa mencarinya di Google Play Store atau App Store. 2. Pilih Foto atau Karya dan Buat Salinannya Pilih foto atau karya yang ingin kamu tambahkan watermark dan buat salinan aslinya terlebih dahulu. Hal ini dilakukan untuk menyimpan karya asli tanpa watermark. 3. Pilih Posisi Watermark Tergantung dari tujuannya, penempatan watermark harus ditentukan dengan baik. Penempatan ini perlu dilakukan dengan hati-hati agar watermark tersebut tidak mengurangi keindahan karyamu. Namun, jika kamu ingin memastikan orang lain tidak bisa menghapusnya, kamu bisa menempatkannya di tengah-tengah gambar atau karya. 4. Buat Watermark sebagai Bagian dari Karya Kamu bisa menjadikan watermark sebagai bagian dari karyamu dengan menempatkannya di posisi yang luput dari perhatian orang. Watermark bisa kamu integrasikan ke dalam karyamu. Proses ini mungkin dapat memakan waktu, namun akan sangat bermanfaat untuk karyamu. 5. Posisikan Watermark di Area Komposit Gambar Dengan kecanggihan teknologi sekarang, watermark dapat dihilangkan dengan mudah menggunakan aplikasi photoshop jika kamu menempatkannya pada latar belakang dengan warna kontras. Untuk membuatnya lebih sulit untuk dihapus, kamu bisa menaruhnya di area komposit gambar dan menyesuaikan tingkat transparansinya. 6. Gunakan Warna Semi Transparan Tingkat transparansi dari watermark memang bebas. Namun jika watermark terlihat terlalu jelas, hal tersebut akan mengurangi keindahan karyanya. Kamu bisa menggunakan warna semi transparan agar watermark terlihat menyatu dengan gambar atau karyamu. 7. Cantumkan Informasi Diri Seperti yang dikatakan sebelumnya, watermark bisa kamu gunakan untuk branding. Kamu bisa melakukannya dengan mencantumkan informasi diri. Sebagai contoh, kamu bisa menggunakan simbol ©, menuliskan nama pemilik, atau menampilkan tanggal publikasi karya tersebut. BACA JUGA 8 Contoh Kop Surat, Bagian Penting dalam Surat Formal Itu dia, Toppers, penjelasan mengenai watermark serta contoh dan cara membuatnya. Selain melindungi karyamu, watermark juga dapat membuatnya terlihat lebih profesional. Kalau kamu sedang mencari alat kantor, kamu bisa mendapatkannya dengan harga terbaik di Tokopedia. Yuk, kunjungi sekarang dan nikmati berbagai promo menarik! Penulis Keefe Adrian
. 381 114 284 496 237 363 288 163
arti watermark dual camera